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ABSTRACT 

A numerical study has been performed to investigate the feasibility of hydro-

dynamically based detection of propagating submersibles. Of particular concern is the 

possibility of utilizing microstructure measurements as a means of wake identification. 

The simulations are based on the Massachusetts Institute of Technology General 

Circulation Model (MITgcm), which has been modified for wake analysis. The 

dissipation of a turbulent wake produced by a sphere uniformly propagating in a doubly 

stratified environment is examined for three scenarios: (i) quiescent regime, (ii) double-

diffusive regime, and (iii) a flow with pre-existing turbulence. The analysis of the 

numerical models was based on two quantities, the dissipation of turbulent kinetic energy 

(ε), and the dissipation of thermal variance (χ). This analysis indicates that wake 

signatures generated by a 1-meter wide object are detectable for 0.4 and 1.2 hours, 

depending on regime, and the detection interval is not strongly sensitive to the density 

ratio. Double-diffusive convection plays a significant role in the duration of submarine 

wakes. The extrapolation of the simulations to objects of ~10m propagating with speeds 

~10m/s suggests that microstructure-based detection is feasible for at least two hours 

after the passage of a submersible and significantly longer outside the double-diffusive 

regime. These results indicate that microstructure-based observations of stratified wakes 

offer a viable method for the non-acoustic detection of submerged objects. 
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I. INTRODUCTION 

A. MOTIVATION AND NAVAL RELEVANCE  

Modern anti-submarine warfare relies heavily on the use of acoustical detection 

methods to track targets. The widespread proliferation of ultra-quiet, air-independent 

propulsion submarines with signal-to-noise levels significantly below the threshold of 

acoustic detection demands new, innovative methods of detection. The dramatic 

improvement of remote sensing methods enables highly accurate measurements of 

submarine wakes. This thesis will evaluate the nature of submarine wakes in stratified 

fluids to enable the effective employment of available technology. 

B. BACKGROUND 

The nature of turbulent wakes has been an area of active scientific investigation. 

The beginnings of what could be considered modern study of turbulence were 

experiments conducted by Reynolds into the nature of turbulent flow. Reynolds’s 

research examined the point at which flow transformed from laminar to turbulent, and 

expressed that relationship as a function of the mean fluid velocity and its viscosity, 

relative to the size of the flow region (Reynolds Number). If this ratio reaches a critical 

value, laminar flow will begin to transition to turbulent flow. Another key observation of 

Reynolds’s research was that these critical velocities were susceptible to initial 

disturbances in the fluid. If these disturbances were large, unstable motion occurred 

before the critical velocity was reached (Reynolds 1883).    

Reynolds’s work provided the basis for much of the subsequent research on fully 

developed turbulence. The manner in which the turbulence dissipates is equally as 

important as generating it in the first place. Richardson (1926) developed the concept of 

the energy cascade. The key premise of this cascade was that energy was imparted into a 

system at large scales, and then it is transferred nonlinearly into a successively smaller 

and smaller eddies. Kolmogorov (1941) expanded the energy cascade concept. Energy is 

imparted on the large scale and dissipates on the viscous scale. This import of energy, at 

sufficiently high Reynolds numbers, generates large scale turbulent eddies (Ecke 2005). 
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The inertia and viscous forces do not solely influence the turbulence of wakes 

generated in the ocean. Since the ocean is typically stratified due to variations in density, 

the wake also experiences gravitational or buoyant forces. The inhibited vertical motion 

caused by a stratified fluid has a number of influences on a submarine wake. The increase 

in potential energy (displacement of buoyant water via mixing) induces an equilibrium 

force. This force causes the vertical component of the wake to collapse and generate 

internal waves. However, if the ratio of inertial to buoyant forces (Froude number) is 

sufficiently high, inertial forces dominate and the wake behavior is similar that of a non-

stratified fluid. This wake collapse causes the horizontal motion to prevail over the 

vertical motion creating horizontally unstable conditions that cause meandering 

horizontal vortices (Lin and Pao 1979). 

Modern computing has enabled the use of direct numerical simulations (DNS) to 

observe turbulent structures of wakes. There are three fundamental types of wakes, each 

with their own unique characteristics: (a) a dragged body with no propulsion, (b) zero net 

momentum, and (c) propelled body with excess momentum (Brucker and Sarkar 2010). 

See Figure 1. 

Figure 1.  Velocity Profiles of Towed and Jet-Propelled Body  

 
 

The image shows the fluid velocity behind the moving body shown on the left.  
a) Dragged body with no propulsion (b) self-propelled body (c) propelled body with 
excess momentum. The dashed line represents zero velocity. Source: M.B. de Stadlerand 
and S. Sarkar, 2011: Simulation of a propelled wake with moderate excess momentum in 
a stratified fluid. J. Fluid Mech., 692, 28–52, doi:10.1017/jfm.2011.489. 
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Discerning the microstructure differences between towed and propelled wakes is 

non-trivial. All turbulent wakes contain three distinct regions: (i) the initially three-

dimensional turbulent range, (ii) an intermediate non-equilibrium range where dissipation 

of kinetic energy decreases, and finally (iii) a quasi-two-dimensional regime with 

minimal vertical velocities. Through DNS several key distinctions are noted between 

wakes of type (a) compared to (b) or (c). In the self-propelled case, larger mean shear 

transfers more energy to turbulent shear production. The turbulent stress created by the 

mean shear is mitigated by buoyancy and reduces the turbulence production, particularly 

in the vertical. This effect is enhanced in stratified self-propelled wakes. As a result, self-

propelled wakes persist longer than both unstratified wakes and towed wakes. These 

buoyancy influences can create anisotropy in the velocity field of the stratified wake 

(Brucker and Sarkar 2010). Additionally, the type of momentum source, jet, propeller, 

etc., and the acceleration of the body can also have significant impacts on the structure of 

the wake (de Stadler and Sarker 2011). These small-scale buoyancy effects are critical to 

both towed and self-propelled wake structure in stratified fluids. This study specifically 

investigates how variances in density influence both the buoyant forces present in the 

microstructure of a submarine wake, and the effect these forces have on the wake 

duration of a three dimensional axisymmetric body with no propulsion.  

One common natural process that influences buoyancy and stratification, both 

central factors that dictate the nature of submarine wakes, is double-diffusive convection. 

Favorable conditions for formation of double diffusion occur in 44% of the world’s 

oceans (You 2002). Ninety percent of the Atlantic Ocean has a density ratio less than 2.3. 

In certain areas of the Atlantic, 95% of the upper kilometer is favorable for salt fingering 

having density ratios between 1.5 and 2.5 (Schmitt 1994). One of the consequences of 

active double-diffusion is the formation of thermohaline staircases, which is attributed to 

variations of the ratio of heat and salt fluxes as a function of density ratio (Radko 2013). 

While double-diffusive phenomena have been the subject of many DNS, including Naval 

Postgraduate School research by Ball (2015), their effects on the duration of submarine 

wakes have not been examined. 
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II. MODEL DEVELOPMENT 

A. MODEL FUNDAMENTALS 

Oceanic General Circulation models are commonly used to represent the 

interactions of momentum and buoyancy on a rotating domain. These interactions are 

accurately described by the Navier-Stokes equations, and their scales occur from 

thousands of kilometers to centimeters. One of the key features of MITgcm, the model 

used in the present investigation, is that its algorithms can utilize the incompressible 

Navier-Stokes equations and subsequently perform over a broad range of scales (Figure 

2). The non-hydrostatic capability of MITgcm makes it suitable to accurately analyze the 

centimeter scale features created by the turbulent wake of a submarine (Marshall et al. 

1997). In addition to the robust model physics, MITgcm offers a great deal of flexibility 

in the structure of the model parameterizations. These calculations require an immense 

amount of computing power and are only possible through the use of modern super 

computers such as Cray XE6. This research utilized more than 100,000 computing hours 

on the Department of Defense High Power Computation Modernization Program and the 

University of Texas Advanced Computing Center.   
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Figure 2.  Schematic of Scales in the Ocean  

 
 

Schematic of the relative size of ocean scales indicating the area where hydrostatic 
dynamics gives way to non-hydrostatic dynamics. Source: A. Adcroft, C. Hill, J. Campin, 
J. Marshall, and P. Heimbach, 2004: Overview of the Formulation and Numerics of the 
MIT GCM. Proc. ECMWF Semin. Ser. Numer. Methods Recent Dev. Numer. methods 
Atmos. Ocean Model., 139–149. 

B. MODEL PARAMETERS 

The ideal DNS would be a realistically shaped submarine producing real thrust 

via its propeller. Unfortunately, the resolution required for accurate measurement of 

dissipation and the computation power required for that resolution make a real world 

simulation unfeasible. The solution is to create a simplified and smaller model. In the 

following simulation, a solid sphere with a 0.6-meter diameter is passed through a 

rectangular region with x, y, and z scale of 4, 2, and 2 meters, respectively. The surface 

temperature, 19.92 °C; bottom temperature, 20.0 °C; and surface salinity 35.03 °C were 

constant across all experiments. The density ratio (Rρ) was varied for each model by 

changing ds/dz (Table 1). The values of temperature and salinity gradients, as well as the 

density ratio, were based on typical oceanographic observations where double diffusion is 

common. No salt fingers are observed when Rρ is larger than two. Typical occurrences of 

salt-finger staircases occur at a Rρ less than 1.8 (Radko 2013).   
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Table 1.   Initial Structure of Temperature, Salinity and Density Gradient for 
the MITgcm Model 

Rρ Surface 
Temperature 

Bottom 
Temperature 

Surface 
Salinity 

Bottom 
Salinity 

Density 
Gradient* 

1.5 20 19.92 35.03 35.0156 0.00941019 
2.0 20 19.92 35.03 35.0192 0.0107835 
2.5 20 19.92 35.03 35.0213 0.0115846 
*Values for density gradient were determined based on UNESCO 1983 (EOS 80) 
polynomial. Source: Ocean Physics Group at Scripps Institute of Oceanography at 
University of California San Diego, cited December 1, 2015: 
http://opg1.ucsd.edu/~sio221/SIO_221A_2009/SIO_221_Data/Matlab5/seawater/Values.  

In order to attain the highest possible resolution while still having a long-enough 

model runtime to observe the required features, each model run was divided into three 

distinct intervals. The first 30 minutes of the model output were saved every 10 seconds, 

and the time step for each model calculation was 0.025s. From 30–75 minutes, the output 

was saved every minute with time step of 0.125s. Beyond 75 minutes, the output was 

saved every 5 minutes with time step of 0.625s. This scheme was developed in order to 

observe the large amount of turbulence and fine detail induced as the submarine passes 

through the domain and the immediate aftermath. Afterward, the larger time steps allow 

observations of several hours. As the wake dissipates, the magnitude of the perturbations 

and their rates of change become smaller resulting in relevant observations of the 

microstructure over periods of several hours. Given the computation power required for 

these calculations this compromise was an important factor in model implementation. 

These conditions allowed the creation of fully developed turbulent wakes under a variety 

of conditions (Figure 3) 
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Figure 3.  Three-Dimensional Visualization of the Submarine Wake 

 
A three-dimensional visualization of the submarine wake in the quiescent regime created 
through the Visualization and Analysis Platform for Ocean, Atmosphere, and Solar 
Researchers (VAPOR) software. Colors indicate velocity (higher in red, lower in blue). 
Red, green and blue axes indicate x, y and z-axis, respectively. 

C. FLUID REGIMES 

In order to investigate the spatial and temporal patterns of the submarine wake 

microstructure, three different model representations were employed. The first and most 

basic case is an initially calm fluid, with uniform stratification and a constant gradient of 

both temperature and salinity. Throughout the entire domain, the fluid velocity was 

initially set to zero. The values of temperature, salinity, and velocity at the surface and 

bottom boundary vary according to the submarine interactions within the domain. The 

vertical eddy viscosity coefficient of the model and the Laplacian friction coefficient are 

set to 10-6 m2s-1. Lateral and vertical eddy diffusivity of salt and temperature (Ks and Kt) 

both set to 10-6 m2s-1. 

The second regime examined the effect that pre-existing salt fingers and active 

double-diffusive convection have on wake duration. The initial conditions were modified 

from the quiescent case as follows. The diffusivity of salt Ks was changed to 10-7 m2s-1. 
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The time step was changed to 0.5 seconds and the model was run without the submarine 

for 3.3 hours. This period of integration was sufficient to produce fully developed quasi-

equilibrium double-diffusive convection, which was used as an initial condition for the 

stratified wake experiment (Figure 4). The time step parameters were then reset to the 

same values as the first experiment and the sub was passed through the domain. 

Figure 4.  Initial Conditions for Temperature Anomaly in Double-Diffusion 
Regime  

 
Temperature anomaly depicting double-diffusive salt fingers in an X-Z plane of the 
model domain at y=200. X- and Z-axis indicate grid location in meters, while color 
depicts positive (red) and negative (blue) temperature anomaly in °C at t = 3.33 hours. 
This example is for Rp = 1.5 

The third regime, pre-existing turbulence, is set up similarly to the double-

diffusive case. Once the turbulent salt fingers formed (Figure 4), the value of Ks was reset 

to 10-6 m2s-1. The pre-existing regime did not have active double diffusion during the 

submarine wake formation and dissipation. Varying the diffusivities was an effective way 

to create small initial perturbations of the same order of magnitude as in typical wave-

induced turbulent patches in the ocean. 

The surface and bottom boundary conditions of the first regime differed from the 

second and third. In the quiescent stratified case the values of temperature and salinity 
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were could vary freely in time as submarine turbulence created variation in the water’s 

temperature, salinity, and velocity. In the double diffusion, and pre-existing turbulence 

cases the surface and bottom temperature and salinity values were maintained at the same 

level for the entire duration of the experiment. Over a long-enough period, the entire 

domain could have become homogenized in distribution of temperature and salinity. 

Since the typical water column in the ocean would not become fully mixed through wake 

generation, these boundary conditions ensured that the domain maintained some degree 

of stratification throughout the time scales used. For each version of the model, 

(quiescent, double diffusive and turbulent) at least three experiments were performed 

with different values of density ratio 1.5,  2,  2.5Rρ = .   
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III. RESULTS 

A. ANALYSIS METHODS 

To analyze the wake duration its signature had to be identifiable from the 

background noise. Since the majority of turbulence occurs directly behind the submarine, 

that area was separated from the rest of the model domain, which was divided into three 

sub-regions. The first region was a 0.6-meter wide area through which the submarine was 

passed and centered in the domain. The other two regions were 0.6-meter regions on 

either side of the submarine (Figure 5). An area of 0.10 meters near the surface and 

bottom boundary was eliminated from the analysis. This is the region where the boundary 

condition was applied, and omitting these areas eliminated any spurious signal due to 

increased noise at the boundary. 

Figure 5.  Model Simulation Depicting the Different Analysis Areas 

 
A two-dimensional slice of the simulation domain in the X-Z plane; 112 seconds elapsed. 
The three distinct regions for analysis are divided by black dashed lines. The vertical axis 
and horizontal axis depict gird distance in meters, while colors indicate  component of 
velocity. 
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From model output of temperature, and velocity data, dissipation of kinetic 

energy (ε) and dissipation of thermal variance (χ) were calculated. An x-y mean of (ε) 

and (χ) was calculated creating a one-dimensional profile. With this profile, a difference 

between εambient and εwake was evaluated. Once the difference between the submarine wake 

region and the ambient regions was less than zero, the wake was considered 

indistinguishable from the background. Based on the direct numerical simulation, εwake 

becomes indistinguishable from εambient when both quantities are in the range of  10-13 to 

10-14 W kg-1. 

Typical ocean measurements of ε and χ are commonly made using free falling 

high-resolution profilers; however, profilers on ocean gilders are achieving measurements 

of similar quality. These gilder-based profilers resolve ε and χ on the order 10-11 W kg-1 

(Peterson 2013), and this level will be used as a nominal detection threshold in the 

analysis of DNS. The results will reference two quantities: (i) the region that is detectable 

using current measurements, the detection threshold, and (ii) the point at which the signal 

is fundamentally indistinguishable from the background, total dissipation time. 

B. QUIESCENT REGIME 

For ε, Rρ = 2.0 was the first wake to dissipate below the threshold in 0.8667 

hours. Rρ = 1.5 reached the detection threshold value in 1.033 hours and Rρ = 2.5 

followed at 1.233 hours. Total dissipation occurred in 4.5, 5.417 and 5.917 hours for Rρ = 

1.5, 2.0, and 2.5, respectively (Figure 6).  

With Rρ = 2.0, χ reached the threshold value in 0.7806 hours and Rρ =2.5 followed 

in 0.7639 hours. Rρ = 1.5 reached the threshold in 0.9139 hours (Figure 7). Unlike ε, 

differences in thermal variance did not persist any significant length of time past the 

detection threshold value.  
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Figure 6.  Difference in Dissipation of Kinetic Energy Created by the 
Submarine Wake in the Quiescent Regime 

 
Difference in dissipation of kinetic engery for the quiescent regime. The y-axis displays a 
logarithmic plot of the difference between εwake and εambient in W kg-1. X-axis is measured 
in hours. Rρ of 1.5, 2.0 2.5 are shown in black, blue and red, respectively. The horizontal 
black dashed line displays the detection threshold.  
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Figure 7.  Difference in Dissipation of Thermal Variance Created by 
Submarine Wake in the Quiescent Regime 

 
Difference in dissipation of thermal variance for the quiescent regime. The y-axis 
displays a logarithmic plot of the difference between χwake and χambient in °C s-1. X-axis is 
measured in hours. Rρ of 1.5, 2.0 2.5 are shown in black, blue and red, respectively. The 
horizontal black dashed line displays the detection threshold. 

C. DOUBLE-DIFFUSIVE REGIME 

The double-diffusive regime displayed the fastest dissipation across all density 

ratios. Rρ = 2.0 was quickest to reach the threshold value in 0.4029 hours. Rρ  = 1.5 

reached the detection threshold a fraction of a second later in 0.4056 hours. Rρ = 2.5 

dissipated below the detection threshold in 0.8167 hours (Figure 8). For χ, the exact point 

of the detection threshold was difficult to evaluate because of the low frequency of the 

model output. The total dissipation times were 0.275, 0.35, and 0.6 hours for Rρ = 1.5, 

2.0, and 2.5, respectively (Figure 9) and it can be safely assumed that the detection 

threshold was reached close to these periods 
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Figure 8.  Difference in Dissipation of Kinetic Energy Created by the 
Submarine Wake in the Double-Diffusive Regime 

 

 
Difference in dissipation of kinetic eneregy for the double-diffusive regime. The y-axis 
displays a logarithmic plot of the difference between εwake and εambient in °C s-1. X-axis is 
measured in hours. Rρ of 1.5, 2.0 2.5 are shown in black, blue and red, respectively. The 
horizontal black dashed line displays the detection threshold 
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Figure 9.  Difference in Dissipation of Thermal Variance Created by the 
Submarine Wake in the Double-Diffusive Regime 

 
Difference in dissipation of thermal variance for the double-diffusive regime. The y-axis 
displays a logarithmic plot of the difference between χwake and χambient in °C s-1. X-axis is 
measured in hours. Rρ of 1.5, 2.0 2.5 are shown in black, blue and red, respectively. 

D. PRE-EXISTING TURBULENCE REGIME  

The pre-existing turbulence regime Rρ = 1.5 was the fastest to reach the detection 

threshold; 0.75 hours and the total dissipation time was 3.733 hours. Rρ  = 2.0 and 2.5 

look nearly identical. The wake reached the threshold value at 0.9367 and 0.95 hours and 

total dissipation occurred at 3.803 and 3.903 hours, respectively (Figure 10). 

The thermal variance dissipated in 0.3639, 0.6833 and 0.7 hours for Rρ = 1.5, 2.0 

and 2.5, respectively, and there was no significant wake remaining below the detection 

threshold (Figure 11).  
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Figure 10.  Difference in Dissipation of Kinetic Energy Created by the 
Submarine Wake in the Pre-existing Turbulence Regime 

 
Difference in dissipation of kinetic eneregy for the pre-existing turbulence regime. The y-
axis displays a logarithmic plot of the difference between εwake and εambient in °C s-1. X-
axis is measured in hours. Rρ of 1.5, 2.0 2.5 are shown in black, blue and red, 
respectively. The horizontal black dashed line displays the detection threshold. 
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Figure 11.  Difference in Dissipation of Thermal Variance Created by the 
Submarine Wake in the Pre-existing Turbulence Regime 

 
Difference in dissipation of thermal variance for the pre-existing turbulence regime. The 
y-axis displays a logarithmic plot of the difference between χwake and χambient in °C s-1. X-
axis is measured in hours. Rρ of 1.5, 2.0 2.5 are shown in black, blue and red, 
respectively. The horizontal black dashed line displays the detection threshold 
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IV. DISCUSSION 

A. FLUID REGIME EFFECTS 

This study presents a comparative analysis of the dissipation of turbulent kinetic 

energy and thermal variance in a stratified wake for three environmental regimes: (i) 

quiescent regime, (ii) double-diffusive regime, and (iii) a flow with pre-existing 

turbulence. As expected, the longest detection periods where observed for the quiescent 

case. The addition of pre-existing turbulence had a small effect on the overall structure of 

microstructure and slightly reduced wake duration. The mean time until ε dissipated 

below the detection threshold for the quiescent and turbulent regimes was 1.0442 and 

0.8789 hours, respectively. The two regimes only differed by 0.1653 hours (~10 

minutes). Since the magnitude of the initial perturbation was small compared to the 

magnitude of the wake forces, it had minimal impact on the wake duration. The double 

diffusion regime, however, showed a substantial decrease in wake duration. The mean 

time to the detection threshold of the double-diffusive regime, 0.5412 hours, was 

approximately half that of the quiescent regime. The shorter wake indicates that active 

double-diffusive convection does influence the physics of the wake turbulence. A 

possible explanation is that the centimeter scale forces of salt fingers are on a similar 

scale to the dissipation scale of both thermal variance and kinetic energy. That variable 

distribution of density further inhibits the vertical motion of the wake.  

Even with the high resolution of this DNS, the verification of the exact 

mechanism for the decreased duration of the submarine wake in the presence of double 

diffusion is difficult. What is certain is that the turbulent microstructure created by a 

submarine wake is a viable method for detection and the kinetic energy is a longer lasting 

measure than thermal variance. 

B. DENSITY RATIO EFFECTS 

The results of the numerical simulation do not yield a clear correlation between 

density ratios and wake duration across all regimes and in terms of ε and χ. At the 

detection threshold there is minimal influence of the density ratio on the wake duration, 
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but small variations do occur especially toward the total dissipation time. There is 

variability between duration calculated using ε or χ, and between fluid regimes. There 

were noticeable changes in wake duration as a function of density ratio. One clear trend 

in both ε and χ and in all three fluid regimes was the wake generated with Rρ = 2.5 

persisted the longest. The density ratio effects for ε were relatively similar across the 

three regimes. Both in the quiescent and double-diffusive regimes Rρ =2.0 was the first 

below the threshold value, but in the turbulent regime Rρ = 1.5 was the first below the 

detection threshold. In ε the largest difference between any to density ratios across all 

three fluid regimes was .3663 hours (~22 minutes). Given that 1.233 hours was the 

longest duration of any wake, a 30% difference in duration is significant. 

The practical utilization of the microstructure-based detection method is limited 

by time scales of wake duration. The relatively short detection periods obtained in this 

study are the product of a relatively small object, moving at slow speed and moderately 

high Reynolds number. A simple scale analysis presented below provides more insight 

into the potential for detection of real-world objects.  

C. REAL-WORLD ESTIMATES 

The scaling of kinetic energy dissipation is shown in Equation (1), where U is the 

velocity scale of the submarine and L is the size scale. Based on dimensional analysis, the 

maximal kinetic energy dissipation ( 0ε ) is expressed as a function of L and U as follows: 

 
3

0
UC
L

ε = , 

   ( )  
  
where C is a non-dimensional constant.   

Assuming the dissipation rate is controlled by the environment and thus is 

independent of the submarine scale and velocity, the kinetic energy dissipation is 

expressed as a function of the initial εo, the time, t; and the dissipation rate λ:   

 
 
 0 exp( )tε ε λ=   ( )   
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Combining (1) and (2), we obtain the timescale ( t∆ ) required for ε  to reach the 

threshold value ( thε ):   

 3

1 ln thLt
CU
ε

λ
 ∆ =  
 

. ( ) 

An estimate of the persistence of a wake from a larger faster moving sub was 

made as follows. The data obtained from the shortest double-diffusive simulation 

(Rρ=2.0) yielded, λ = -4.025x10-3 from an exponential best-fit curve. For the same 

experiment, the values of C was evaluated using (1), resulting in C= 2x10-2. This made it 

possible to make a conservative estimate of the detection period using (3) for arbitrary 

object sizes (L) and velocities (U). For instance, when U is increased to ~ 1 m and L is 

increased to 10 ~m/s and the detection threshold still set to 10-11, Equation (3) indicates 

that the wake would be detectable for approximately two hours. Increased speed or object 

size would further increase the duration of detectable wake and in the future improved 

measurements could further expand those detections.  

D. CONCLUSIONS 

Numerical experiments regarding the persistence of submarine wakes in stratified 

fluids were performed. The influences of environmental conditions (quiescent, double 

diffusive and turbulent) and background density ratio were measured. The presence of 

double diffusion appeared to shorten the wake duration, but the precise physical 

mechanisms that caused this require higher-resolution modeling and further analysis. The 

resulting data indicated that there was marginal sensitivity to the background density 

ratio. The density ratio had some influence, especially at higher values of Rρ, but the 

differences were on the orders of minutes. The wake signatures in terms of the kinetic 

energy dissipation were found to be more persistent than those based on thermal variance. 

Therefore, it is suggested that future experimental and modeling studies be focused on ε -

based detection.       

 Overall, the current project revealed that microstructure-based detection, 

especially based on the dissipation of kinetic energy, is a viable operational method for 
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the detection of submerged moving objects. High-resolution numerical simulations can 

offer valuable guidance for implementation of such techniques. 
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